
Informatica Economică vol. 14, no. 2/2010 97

ASETS – An Academic Trading Simulation Platform

Claudiu VINŢE, Alexandru LIXANDRU, Andrei JURUBIŢĂ, Adrian BARDAN
Academy of Economic Studies, Bucharest, Romania

claudiu.vinte@ie.ase.com, alex.lixandru@gmail.com, andrei.jurubita@stud.ase.ro,
adrian.bardan@a3d.ro

This paper is intended to present the results of our academic research upon a distributed
computing environment dedicated to trading simulation. Our research has been conducted
with the aim of creating a trading simulation platform, that would provide both the
foundation for future experiments with trading systems architectures, components, APIs, and
the framework for research on trading strategies, trading algorithms design, and equity
markets analysis tools.
Keywords: Trading Systems, Simulation, Distributed Computing, Service-Oriented
Architecture (SOA), Message-Oriented Middleware (MOM), Java Message Service (JMS)

Introduction
The initial idea of a trading simulator

within academia came along as a necessity,
under the auspices of the Master’s program
in Economic Informatics, the Master’s
program organized by the Department of
Economic Informatics, within the Faculty of
Cybernetics, Statistics and Economic
Informatics, which proposed for the first
time, as part of curriculum for the university
year 2009-2010, the course upon The
Informatics of the Equity Markets. ASETS is
the acronym from the Romanian version of
the Academy of Economic Studies Trading
System. Our research has been directed
toward designing a trading environment that
would create the opportunity for students to
study in details the investor’s needs from an
electronic trading platform, the components
of a trading system and their functionality in
a straight through processing approach, and
the trading strategies that can be
implemented to corroborate models for
automatic (program) trading.
In our view, ASETS platform lays the
foundations for multiple directions of
research, concerning electronic transactions
on the equity markets [1].
Today’s stock exchanges are high-tech
organizations. The main parts of an
electronic trading platform are [2] [3]:
 the user front end, consisting of a trading

system and a trading interface (API);
 the network, consisting of access points

to a wide area backbone network and
interfaces that are provided to members;

 the back end, which handles the major
functions of trading and trade
management, market supervision and
control, information dissemination, and
provides industry standard interfaces to
settlement organizations, information
vendors and market data vendors.

Through its components, ASETS simulation
platform supplies functionality in all these
three areas. Apart from settlement and
clearing activities, ASETS covers the entire
transactional process of ordering, order
matching, execution generation and capture,
trade disseminated and client portfolio
management [4]. In addition, within the
simulation environment, there are real world
delayed-prices disseminated to the investors,
who can also access the simulated-market
depth for each tradable financial instrument,
and the market map.

2 The approach to trading simulation
The sole traders in a pure order-driven
market are the investors who are seeking to
buy or sell shares for their own portfolio
purposes. They are sometimes referred to as
“the naturals”. Two basic order types used by
naturals in a trading environment are:
 limit orders – a maximum price limit is

placed on a buy order, and a minimum
price limit is places on a sell order;

 market orders – the instruction on a

1

98 Informatica Economică vol. 14, no. 2/2010

market order is simply to buy or sell “at
market”, which means that the order will
be matched with the best available
position (depending of the side) existent
in the marketplace.

The limit orders, which are entered into a
limit order book, establish the prices at which
the market orders will execute. The market is
order-driven precisely because the limit
orders placed by some participants set the
values at which others can trade by placing
market orders. In such an environment, the
limit order placers are the liquidity suppliers,
and the market order traders are the liquidity
takers. In an order-driven market, the
liquidity builds as limit orders are entered in
the book, and liquidity is drawn down as
market orders trigger trades that eliminate
limit orders from the book.
Some participants are motivated to be
liquidity providers because, whenever a trade
is made, the transaction price typically favors
the limit order placer. For instance, assume
that the best bid set by a limit order placer
seeking to buy is 10 monetary units, and that
the best offer set by a limit order placer
seeking to sell is 10.5. If a market order to
buy arrives, it will execute at 10.5, or 0.5
monetary units more than the limit order
buyer would pay if his or her limit order
were to execute. Similarly, if a market order
to sell arrives, it will execute at 10, or 0.5
monetary units less than the limit order seller
would receive if his or her order were to be
executed [5]. On the other hand, while the
market order trader pays more for a purchase
or receives less for a sale, he or she benefits
from trading with certainty and immediacy
[6].
Two conditions must be met for an order-
driven market to function:
 some participants must be looking to buy

at a time when others are looking to sell;
 on each side of the market, some

participants must choose to place limit
orders while others must select the
market order strategy.

Taking into to account the above-mentioned
aspects, we came to the realization that
having only live participants on the

marketplace would not create enough
liquidity in the simulation environment and,
therefore, we created a specially tailored
module for pouring limit orders into the
market, for each tradable financial
instrument. This component, Pseudo-
Random Order Generator (PROG), plays in
these circumstances the role of a liquidity
supplier, while the live participants, who are
allowed to place market orders along with
limit orders, benefit from such a simulation
environment as liquidity takers.
ASETS has been designed to reflect a real
world, order-driven market structure, aiming
to capture the dynamic properties of price
formation. The simulation environment is
electronic, and it currently accepts only two
basic types of orders (market and limit).
A trading simulator can be based on various
approaches:
 canned data – where quotes, orders,

prices and trades are taken from a
historic transaction record, and the live
participants trades are done against the
historic prices;

 computer-generated data – where the
simulation itself creates the entire market
environment, the quotes, and the
transactions record; the live participants
trades are done against the simulated
prices;

 computer-generated data with real
world price seeds – where the computer-
generated orders are placed at price
levels departed from the real market
prices, although randomly created within
predefined spreads.

The canned data approach is limited in two
respects. First, a live player’s own orders
cannot affect the record of past prices – they
continue to be the past stored prices. In the
real world, the live trader’s orders can affect
the evolution of prices in the marketplace.
Second, with canned data, it is not possible to
rerun a simulation using different parameter
settings and/or trading strategies, because the
transaction record is the product of the
specific market that produced it. On the other
hand, with solely computer-generated data,
the trading simulation would lack the

Informatica Economică vol. 14, no. 2/2010 99

connection with the real world prices and
market evolution.
ASETS was conceived as a trading
simulation environment where live
participants’ orders coexists with computer-
generated orders, created departing from
delayed prices captured from the Bucharest
Stock Exchange (BSE) [7]. The assumption
was that only the orders placed by the live
participants would not be enough for
sustaining the liquidity of the simulation
environment [8]. Consequently, a special
component has been design (Pseudo-Random
Order Generator – PROG) to play the role of
a market maker, by placing regularly buy and
sell orders, for each tradable financial
instrument, at prices confined within
predefined (parameterized) spreads from the
delayed prices received from BSE. Following
this approach, ASETS offers the ability of
conducting simulation-trading against a
marketplace very similar to the one supplied
by BSE. Based on the delayed market-data,
PROG module is designed to take into
account, when it comes to order generation,
the evolution of the real market in terms of
price variation, order volume, and number of
trades already completed. Along with prices,
Delayed market-Data Feed (DDF) supplies
information upon trading volume, value,
number of trades etc. Furthermore, by
reproducing the key parameters of a real
marketplace, ASETS platform can offer a
virtually even more active and liquid trading
environment, creating the fundaments for our
intended future research in trading algorithms
and market analysis tools.

3 A service-oriented architecture with an
underlying messaging middleware
One of desiderates that we embraced from
the initial phase of this research was the
commitment to employing open source
technologies throughout the trading
simulation environment. Our goal has been
to provide to the users of the trading
simulation system a convenient way of
accessing the platform from the internet,
through the means of employing a servlet
responsible for HTTP tunneling [9] [10].

Essentially, ASETS graphical user interface
(Trading GUI) has been implemented as a
Java applet, which can be launched from a
web browser. The potential user (investor)
has first to register on the ASETS web site,
choosing an user name and obtaining an
automatically generated password (which
may be changed later on). Trading GUI
applet is the only component of the system
that the participants at the trading activity
come in contact with. All the other
components of the simulation platform are
transparent to the end-user, and create an
environment that replicates the perspective of
being connected to a live trading
marketplace. The architectural design is one
of service-orientation (SOA). Each
component of the system exposes its
functionality, as a service provider, to the
other components [11]. The requests for
services and the supplies of replies are
flowed through a message-oriented
middleware (MOM). The intention and the
format of this paper do not afford us the
necessary space to go into all the details of
ASETS message-oriented trading API. A
MOM makes use of a message provider
(broker) to mediate the messaging
operations. In this parading, the elements of a
MOM-based system are client applications,
messages, and MOM messaging provider.
Under the broad umbrella of client
applications, can be in fact identified certain
applications that play functionally the role of
a client, and others that have the functional
role of a server. All the system applications
are perceived as clients of the MOM
messaging provider [12]. Using a MOM
system, a client makes an API call to send a
message to a destination managed by the
provider. The call invokes provider services
to route and deliver the message to the
consumer. Once it has sent the message, the
producer can continue the processing flow,
relying on the fact that the messaging
provider retains the message until a receiving
client retrieves it. In this manner, the MOM-
based model, in connection with the message
provider, open the possibility of creating a
system of loosely coupled components. Such

100 Informatica Economică vol. 14, no. 2/2010

a system can continue to function reliably,
without downtime, even when individual
components or connections fail. The client
applications are consequently effectively
relieved of every communication issue,
except that of sending, receiving and
processing messages. Through an

administrative tool coupled with the
messaging provider the user can monitor and
tune the performance of the communication
flows. Figure 1 shows the architecture of
ASETS simulation platform. The functional
services (modules) are interconnected using
ASETS API, described in [13].

Physical
Destinations

Java

Client
Runtime

Order
Management
Server (OMS)

Java

Client
Runtime

Portfolio
Management
Server (PMS)

Trades,
Portfolios

Clients,
Orders,

Executions

Java Client
Runtime

Exchange
Simulation

Engine
(ESE)

Persisted Messages
and Broker State

Configuration Files
and Logs

User Repository

JMS
Provider

HTTP Tunnel
Servlet

Web Server

Java Client
Runtime

Trading
GUI

Firewall

Java Client
Runtime

Trading
GUI

Java Client
Runtime

Trading
GUI

. . .

SOAP
Client

Delayed Data
Feeds (DDF)

Bucharest
Stock

Exchange
(BSE)

Prices,
Companies,

Indices

Java Client Runtime

Pseudo-Random
Order Generator

(PROG)

Java Client Runtime

Java Client Runtime

Capital Allocation
through Rectangular
Distribution Engine

(CARD)

Fig. 1. The architecture of ASETS trading simulation platform

ASETS API has been designed and
implemented in conjunction with Java
Message Service (JMS) API. JMS
specification captured, from its conception,
the essential elements of a generic messaging
systems, namely:
 the concept of a messaging provider that

routes and deliver messages;
 distinct messaging patterns, or domains

such point-to-point messaging and
publish/subscribe messaging;

 facilities for synchronous and
asynchronous message receipt;

 support for reliable message delivery;

Informatica Economică vol. 14, no. 2/2010 101

 common message formats such as text,
byte and stream.

Summarizing, messaging is a very effective
means of building the abstraction layer
within SOA, needed to fully abstract a
business service (functionality) from its
underlying implementation. Through
business messaging, the business service
(say, the order booking) does not need to be
concerned about where the corresponding
implementation service is located, what
language it is written in, what platform it is
deployed on, or even the name of the
implementation service. All the above-
mentioned elements have equally constituted
the reasons why we turned to Open Message
Queue (OpenMQ), as the open source MOM
implementation of JMS, for designing
ASETS architecture based on it.

4 System components and functionality
ASETS trading simulation platform has a
modular service-oriented design. Each
module plays a precise role within the
system, the simulation environment being
conceived to deliver a real-world-like trading
experience to a potential investor. The main
modules and their functionality are described
below.
Order Management Server (OMS) is chiefly
responsible for processing orders placed by
the market participants, managing user
connections, and channeling the executions
generated by the order-matching engine back
to the users.
Portfolio Management Server (PMS)
delivers the trade generation processing, and
client portfolio maintenance.
Exchange Simulation Engine (ESE) is the
module where the order-matching takes
place. It implements the matching algorithm,
and plays the role of a stock exchange.
Delayed-Data Feed (DDF) consists of a
collection of web-clients that connect to
corresponding web services, intended to
capture delayed market-data disseminated by
The Bucharest Stock Exchange (BSE). The
feed gathers data regarding the financial
instruments traded on BSE, listed companies
and their status, prices, volumes, exchange

indices etc. The captured data is stored in the
system database. Delayed prices are also
published to a specific topic within the
messaging provider, topic at which the
system components interested in them can
subscribe.
Pseudo-Random Order Generator (PROG)
is the module that creates buy and sell limit
orders, departing from the real market data
captured by DDF from BSE, and place them
on the simulated marketplace offered by
ESE. As we mentioned earlier, this module
provides the needed liquidity to an
environment with an expectedly modest
trading activity coming from live
participants, when compared to a real stock
market.
Capital Allocation through Rectangular
Distribution Engine (CARD) is the
component that generates the rectangular
distribution for creating the map of the market.
The market map is a GUI feature that provides
to the investor a tridimensional perspective of
the stock market [14]. The area of a rectangle
corresponds to the market capitalization of a
listed company. The color of a rectangle is
based on the price variation of the stock,
within the considered interval of time:
 nuances of red for loses;
 black for stagnation of stock price;
 nuances of green for price gains on the

market.
Trading GUI is the graphical interface
offered to the users of ASETS platform. The
GUI can be launched from a web browser
and it runs as a Java applet within browser’s
window. Once the investor created a valid
user name from ASETS website, and that
user name was enabled, then the GUI applet
can be launched and the investor may be able
to connect to the ASETS simulation platform
(figure 2).
Once the user name and the password are
authenticated by the system, the investor will
be able to retrieve his or her trading activity
realized during the current trading session.
ASETS platform provides daily trading
sessions, meaning that the investor orders are
valid within the trading session they were
placed in. At the end the day, all the orders

102 Informatica Economică vol. 14, no. 2/2010

that were not executed, or not fully executed,
are considered as canceled, and they are not
carry on to the next trading session. The

system does not handle good-till-canceled
(GTC) type of orders.

Fig. 2. The main workbench of ASETS GUI, containing the login window

The workbench of ASETS GUI is organized
in two panels, for Orders and Executions.
The Orders panel contains all the orders the
user placed during the current trading
session. Each order has assigned to it an
order (system) status and a market status.
From the trading system perspective, an
order may be in one of the following states:
 ADD, newly created order, which has not

been accepted by the market (ESE) yet;
 ADDED, newly created order accepted by

the market;
 ADD_FAILED, newly created order, which

was not accepted by the market;
 UPDATE, order update, which has not been

accepted by the market yet;
 UPDATED, order update accepted by the

market;
 UPDATE_FAILED, order update, which was

not accepted by the market;
 CANCEL, order cancel, which has not been

accepted by the market yet;
 CANCELED, order cancel accepted by the

market;
 CANCEL_FAILED, order cancel, which was

not accepted by the market;
 EXECUTED, order executed, either fully or

partially.

From the market perspective, a trading order
may fall in one of the below categories:
 PENDING, if there was not received any

acknowledgement from the market
(ESE);

 ON_MARKET, when the order was
acknowledge to have reached the
market;

 PARTIALLY_EXECUTED, when the ordered
quantity was partially filled;

 FULLY_EXECUTED, when the ordered
quantity was entirely satisfied;

 CLOSED, when the order was successfully
canceled and removed from the market.

The Executions panel contains the market-
generated executions, corresponding to the
orders placed by the user, and which were
captured by OMS and supplied to GUI
(figure 3).
From the GUI, the investor has the ability to
place new buy and sell orders. The total
value of the buy orders has to be within the
limits of a system defined cash amount,
available to each investor once he or she
registered into the system. As for the sell
orders, the investor may only sell a financial
instrument that possesses in his o her
portfolio.

Informatica Economică vol. 14, no. 2/2010 103

Fig. 3. ASETS GUI with Orders and Executions panels

ASETS simulation platform currently does
not support short selling, but this aspect may
be subject to change in the future. The user
interface for order entry was designed to help
investor make convenient choices, in terms
of symbol for the desired financial
instrument to be ordered, and the type of
order that he or she intends to place (market
or limit). This approach also reduces the

chance of potential input errors from the
investor’s part. The principle followed here
was to ensure a robust input-data validation
locally, in order to minimize the probability
of action failure, and reduce the overall data
flow among component systems. A
successfully placed order can be
subsequently changed (updated) or canceled.

Fig. 4. The input window for placing a new order (buy side)

104 Informatica Economică vol. 14, no. 2/2010

The order update operation allows only for:
 changing a limit order into a market

order, but not the vice versa;
 decreasing the ordered quantity, for both

market and limit orders.
The order placement window is shown in
figure 4. To place in a sell order, the investor
would need to know exactly what financial

instruments he or she possesses, and in what
quantity.
ASETS GUI offers to the investor the ability
to view and save his or her portfolio of
acquired financial instruments, keeping its
value up to date through a price feed supplied
by DDF, as figure 5 illustrates.

Fig. 5. Investor’s portfolio window

Through the GUI, the live participant to the
simulation environment is also able to

consult the market depth for a given trading
symbol, as figure 6 shows.

Fig. 6. Market depth window, showing the current orders on the exchange for symbol BRD

Furthermore, the investor can benefit from
the market map tridimensional perspective

(figure 7).

Informatica Economică vol. 14, no. 2/2010 105

Fig. 7. Market map window, containing all the symbols listed on sections I, II, III of BSE

5 Conclusions and future directions of
research
Our research has been directed toward
designing a trading environment that would
create the opportunity for the students to
study in details the investor’s needs from an
electronic trading platform, the components
of a trading system and their functionality in
a straight through processing approach, and
the trading strategies that can be
implemented to corroborate models for
automatic (program) trading. In a simulation-
trading environment, human agents compete
on resources created by computer algorithms,
within a scenario-driven market place. The
components that create these scenarios have
to sense the trading patterns of the human
investors, and act accordingly. By designing
a trading API for ASETS platform based on a
message-oriented middleware, we achieved a
fine balance, concerning the overall system
response, availability, reliability, and
flexibility in accepting future changes and
extensions.

The use of messaging, as part of the overall
service-oriented trading simulation, allows
for greater architectural flexibility and
agility. These qualities are achieved through
the use of abstraction and decoupling. With
messaging, subsystems, components, and
even services can be abstracted to the point
where they can be replaced with little or no
knowledge by the client components.
Architectural agility is the ability to respond
quickly to constantly changing environment.
In our view, ASETS platform lays the
foundations for multiple directions of
research upon electronic transactions on the
equity markets. Based on the current results,
we intend to focus our research on two
primary domains: market analysis (trend
identification) and algorithmic trading. These
two domains are cascading style
interconnected: an efficient model for
algorithmic trading cannot be conceived
without the ability to identify or predict, in a
timely fashion, the market directions of
evolution.

106 Informatica Economică vol. 14, no. 2/2010

Acknowledgements
We would like to extend our thanks and
appreciations to the entire 2009-2010 Master’s
program series of students, who contributed to
ASETS project, in a modularly fashion of
design and development. Special thanks have
to go the following students, who willingly
devoted their time and energy in the final
integration phase of the project: Alexandru
SIROMASCENCO (DDF, PROG), Cristina
PAUNĂ (GUI), Andreea MARCU (PMS),
Irina MARCU (PMS), Mădălina APOSTOL
(ASETS website), Gheorghe SOROCEAN
(GUI), Sabina Monica POPESCU (API), Irina
MANEA (ESE), Ştefan DRAGOMIR
(PROG).

References
[1] H. McIntyre, Straight Through

Processing, The Summit Group
Publishing, Inc., New York, 2004.

[2] H. McIntyre, How the U.S. Securities
Industry Works - Updated and Expanded
in 2004, The Summit Group Press, New
York, 2004.

[3] R. A. Schwartz, R. Francioni, Equity
Markets in Action (The Fundamentals of
Liquidity, Market Structure & Trading),
John Wiley & Sons, Inc., 2004.

[4] L. Harris, Trading and Exchanges,
Oxford University Press, Oxford, 2003.
[5] C. Vinţe, “The Informatics of the Equity

Markets - A Collaborative Approach,”
Informatica Economică Journal, Vol. 13,
No. 2, 2009, INFOREC Publishing
House, Bucharest, 2009.

[6] O. J. Katz, D. L. McCormick, The
Encyclopedia of Trading Strategies,
McGraw-Hill, New York, 2000.

[7] A. S. Tanenbaum, S. van Maarten,
Distributed Systems - Principles and
Paradigm, Vrije Universiteit Amsterdam,
The Netherlands, Prentice Hall, New
Jersey, 2002.

[8] C. Vinţe. Upon a Trading System
Architecture based on OpenMQ
Middleware, Open Source Science
Journal, Vol. 1, No. 1, 2009, Available
at: http://www.opensourcejournal.ro

[9] Sun Microsystems, Inc., Java Message
Service, Available at:
http://java.sun.com/products/jms

[10] Sun Microsystems, Inc., Open Message
Queue: Open Source Java Message
Service (JMS), Available at:
https://mq.dev.java.net

[11] T. Erl, SOA Design Patterns, Prentice
Hall by SOA Systems Inc., New Jersey,
2009.

[12] M. Richards, R. Monson-Haefel, D. A.
Chappell, Java Message Service (Second
Edition), O’Reilly Media Inc.,
Sebastopol, California, 2009.

[13] C. Vinţe, “Upon a Message-Oriented
Trading API,” Informatica Economica
Journal, Vol. 14, No. 1, 2010.

[14] C. Vinţe, “Upon a Tridimensional
Perspective of the Stock Market”, in
Proc. The Ninth International Conference
on Informatics in Economy, Bucharest,
May 7-8, 2009.

Claudiu VINŢE has over thirteen years experience in the design and
implementation of software for equity trading systems and automatic trade
processing. He is currently CEO and co-founder of Opteamsys Solutions, a
software provider in the field of securities trading technology and equity
markets analysis tools. Previously he was for over six years with Goldman
Sachs in Tokyo, Japan, as Senior Analyst Developer in the Trading
Technology Department. Claudiu graduated in 1994 The Faculty of

Cybernetics, Statistics and Economic Informatics, Department of Economic Informatics,
within The Bucharest Academy of Economic Studies. He holds a PhD in Economics from
The Bucharest Academy of Economic Studies. Claudiu has also been given lectures and
coordinated the course and seminars upon The Informatics of the Equity Markets, within the
Master’s program organized by the Department of Economic Informatics. His domains of
interest and research include combinatorial algorithms, middleware components, and web

Informatica Economică vol. 14, no. 2/2010 107

technologies for equity markets analysis.

Ionuţ-Alexandru LIXANDRU graduated The Bucharest Academy of
Economic Studies in 2008. He is a M. SC student in the field of Economic
Informatics within The Faculty of Cybernetics, Statistics and Economic
Informatics, with the M. SC thesis Distributed System for Supporting Stock
Exchange Transactions in a Simulation Environment. Alexandru has been for
over 3 years with TechTeam Global, within the Global Business Applications
Department. His main areas of interest are systems integrations, web

technologies, software maintainability, and knowledge management.

Andrei JURUBIŢĂ is student of The Bucharest Academy of Economic
Studies, and he works as a web programmer for Globalsys Solutions. Andrei
graduated in 2008 The Faculty of Cybernetics, Statistics and Economic
Informatics, Department of Economic Informatics, and he is currently
following the Master’s program in Economic Informatics. He was awarded
with a prize at the Informatics Olympiad in High School, and he was awarded
3rd place at Infomatrix 2004 with “C++ for Kids”, working within a team of

four. His domains of interest and research include compression, cryptography, distributed
systems, operating systems.

Adrian-Ion BARDAN graduated in 2008, and has a Bachelor Degree in
Informatics from the University of Bucharest. He will graduate in June 2010
the Master’s program in the field of Economic Informatics within the
Bucharest Academy of Economic Studies, with the final thesis upon Applying
OCR algorithms using a distributed system. His main area of expertise
includes the design and development of web applications, while being also
interested in software architectures, new web technologies, Java EE

programming, and mobile applications development. Adrian is ASETS project involved, in a
modularly fashion of design and development, the entire Master’s program series of students.

